HIGHER ORDER DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS
نویسندگان
چکیده
منابع مشابه
Discontinuous Galerkin finite element methods for second order hyperbolic problems
In this paper, we prove a priori and a posteriori error estimates for a finite element method for linear second order hyperbolic problems (linear wave equations) based on using spacetime finite element discretizations (for displacements and displacement velocities) with (bilinear) basis functions which are continuous in space and discontinuous in time. We refer to methods of this form as discon...
متن کاملDiscontinuous Galerkin finite element method for parabolic problems
In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of IIut(t)llLz(n) = llut112, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also...
متن کاملHp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems
We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...
متن کاملDispersive Behaviour of High Order Discontinuous Galerkin Finite Element Methods
The dispersive properties of hp version discontinuous Galerkin finite element approximation are studied in three different limits. For the small wave-number limit hk → 0, we show the discontinuous Galerkin gives a higher order of accuracy than the standard Galerkin procedure, thereby confirming the conjectures of Hu and Atkins (J. Comput. Phys., 182(2):516– 545, 2002 ). If the mesh is fixed and...
متن کاملDiscontinuous Galerkin Finite Volume Element Methods for Second-Order Linear Elliptic Problems
In this article, a one parameter family of discontinuous Galerkin finite volume element methods for approximating the solution of a class of second-order linear elliptic problems is discussed. Optimal error estimates in L2 and broken H 1norms are derived. Numerical results confirm the theoretical order of convergences. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 25: 140...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea Society for Industrial and Applied Mathematics
سال: 2014
ISSN: 1226-9433
DOI: 10.12941/jksiam.2014.18.337